A model for the mechanism of strand passage by DNA gyrase.

نویسندگان

  • S C Kampranis
  • A D Bates
  • A Maxwell
چکیده

The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requires the enzyme to dictate the directionality of strand passage. Although it is known that this is a consequence of the characteristic wrapping of DNA by gyrase, the detailed mechanism by which the transported DNA segment is captured and directed through the DNA gate is largely unknown. We have addressed this mechanism by probing the topology of the bound DNA segment at distinct steps of the catalytic cycle. We propose a model in which gyrase captures a contiguous DNA segment with high probability, irrespective of the superhelical density of the DNA substrate, setting up an equilibrium of the transported segment across the DNA gate. The overall efficiency of strand passage is determined by the position of this equilibrium, which depends on the superhelical density of the DNA substrate. This mechanism is concerted, in that capture of the transported segment by the ATP-operated clamp induces opening of the DNA gate, which in turn stimulates ATP hydrolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism

The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed...

متن کامل

DNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.

DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to...

متن کامل

Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle

DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is thought to be guided by the C-terminal domains of the GyrA subunit of gyrase that wrap DNA around...

متن کامل

Helicase-appended topoisomerases: new insight into the mechanism of directional strand transfer.

DNA strand passage through an enzyme-mediated gate is a key step in the catalytic cycle of topoisomerases to produce topological transformations in DNA. In most of the reactions catalyzed by topoisomerases, strand passage is not directional; thus, the enzyme simply provides a transient DNA gate through which DNA transport is allowed and thereby resolves the topological entanglement. When studie...

متن کامل

A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site

DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 15  شماره 

صفحات  -

تاریخ انتشار 1999